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* The interaction between fluid and solid structures (rods, tubes) in
nuclear power plants may lead to flow-induced vibrations (FIV),
causing material fatigue, wear, and eventually component damage.

 Within the GO-VIKING project (“Gathering expertise On Vibration
ImpaKt In Nuclear power Generation”), the experimental and
numerical investigation are performed to improve the understanding
of FIV in reactor cores and steam generators (SG).

* The objective of WP3 is to develop, implement, and validate different
FSI methods for the analysis of FIV in SG geometries.

* CEA provided experimental data on the vibration of a flexible tube in a
channel and in a tube bundle, both configurations being exposed to
single phase cross-flow.
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Small hydraulic loop built at CEA (France)

Study of FIV in a square tube bundle at low Reynolds
numbers

Test section dimensions: 70 x 100 x 600 (width x
depth x height) mm3.

Bundle parameters:
- 3x5 tubes
-12.15 mm tube diameter
- 100 mm tube length
-P/D of 1.44

Fluid flow characteristics are measured using a PIV
setup. A hiﬁh-s eed camera is used to capture the
flow around tubes in a 2D central plane within the
test section.

Flexible

.\\\\Tx\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' IR DNNRNNN NN NN

View of the AMOVI test section (full bundle configuration) [1]
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* The displacement at the tip of the tube is
deduced from a strain Eau e instrumenting
the root of the flexible blade, assuming that
the first vibration mode is predominant.

Vibration |[«> |

Single tue cbnfiguration [1]
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* The displacement at the tip of the tube is

deduced from a strain

auge instrumenting

the root of the flexible Ela e, assuming that
the first vibration mode is predominant.

* The flexible tube is supported by a flexible

blade allowin

direction,

either

the dra

direction, with a frequency
a damping ratio {n=0.064% in air [1].

it to vibrate in only one

or the lift
n=27.5 Hz and

p T | Sample rate :
Q(L/s) (bar) | (°0) (Hz) Time (s)
0.50 2.19 18 1000 409.6
Single flexible tube 1.70 3.33 21 1000 409.6
(lift direction) [ 290 | 320] 25 1000 409.6
4.00 3.53 26 1000 409.6
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Single tube configuration [1]
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Geometry development:

e 3D CAD model has been generated from
sketches and sliced in several domains.

Mesh generation:

* Using multizone meshing method, several
hexahedral meshes were generated.

e Mesh with 4 million elements is selected for
the investigations.

— aspect ratio: 115
— min. orthogonality angle: 38°
— expansion factor: 21
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 To reduce the effort of solving the full mechanical model, the response of the
mechanical body motion can be solved using a rigid body solution method [2].

* A rigid body is a solid object that moves through a fluid without deforming. Its
motion is derived by the fluid forces and torques acting upon it. Mesh motion is used
to move the mesh by solving the rigid body equations of motion.
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 To reduce the effort of solving the full mechanical model, the response of the
mechanical body motion can be solved using a rigid body solution method [2].

* A rigid body is a solid object that moves through a fluid without deforming. Its
motion is derived by the fluid forces and torques acting upon it. Mesh motion is used
to move the mesh by solving the rigid body equations of motion.

 Rigid body solution algorithm (mesh motion technique):

* Linear momentum solver F =mx
* Newmark integration scheme (2nd order) F = Fpero + Mg — kspring (x — X50) — Fexternal

e Angular momentum solver

* First Order Backward Euler M=06=x10+10
* Simo Wong algorithm M = Myero = Kspring (rotate) (60 — 0y) — Mgxternal

(2nd order accurate, based on modified Newmark integration)
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Rigid body solver requires following input:

* Rigid body geometry

* Mass moment of inertia

* Body mass

o Stiffness /- Torque ( as external forces), Gravity
* Motion constraint or degree of freedom



Modal simulation with ANSYS
Mechanical \;‘i
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 CAD model from the CEA’s drawings was generated
for the flexible AMOVI tube with blade.

e Unstructured mesh with 1 million of elements is
generated.

* Bottom face set specified as a fixed support.

* Density of stainless tube is 8300 kg/m3, elasticity is
200 GPa and Poisson ratio is 0.3.

* Weight of tube+blade is 45.3 g.

Simulation results:

* The calculated first eigenfrequency of fn 29.3 Hz
agrees well with the experimental result of 27.5 Hz,
reported by CEA. .
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Stiffness derivation with ANSYS
Mechanical g
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* The fluid flow is in Z direction and the body
vibrates in Y (lift) direction.
* An external load (1 N, 2 N and 3 N, respectively) T /:\.

has been applied in Y-direction (Lift) and the

corresponding displacements and resulting

. . . |
torques on the fixed support were calculated. - Displacement in letral direction | ' e ‘
- Flow direction X

. 3tiffness of 21.13 N/m.rad has been derived from
ata.
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* The fluid flow is in Z direction and the body
vibrates in Y (lift) direction.

* An external load (1 N, 2 N and 3 N, respectively) T /:\.
has beendappliegl inI Y-direction (Lélft) andlthe BM .
corresponding isplacements an resulting . . L |
torques on the fixed support were calculated. Displacement in letral direction | ‘e ‘

- Flow direction X

. 3tiffness of 21.13 N/m.rad has been derived from
ata.

* The mass moment of inertia (7.6e-4 kg.m2) was |0 .
derived based on the rigid body coordinate | l
“

system using the parallel axis theorem. '
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Numerical setup:
* Transient, SST turbulence model (Intensity at inlet = 5%)
* Buoyancy with production and dissipation
* High resolution advection scheme

e Automatic wall functions

* Mass flow rate is 2.89 kg/s.

e Residuals control: <1e-5 RMS,

* Inner loop =1~20 and max. CFL< 5

Rigid body setup:

e Angular momentum solver

* Mesh convergence < 1e-3 and loops =1~ 20

» Solver coupling update at every coefficient loop

* 1 rotational degree of freedom on Z axis
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* An FSI model was prepared using ANSYS Workbench.

* Implementation methods and boundary conditions of rigid body were
analysed.

* Results were compared with experiment.

* Mesh independence of the results will be checked.

* Finer grids will be analysed and compared with System Coupling
simulation (FSI).

e Other turbulence models will be investigated.
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